
Software Engineering Technology

September 2003 www.stsc.hill.af.mil 25

One of the most dominant and serious
complaints arising from the ongoing

software crisis is the inability to estimate
with acceptable accuracy the cost,
resources, and schedule required for a soft-
ware development. Traditional intuitive
estimation methods have consistently pro-
duced optimistic results that have con-
tributed to the too familiar cost overrun
and schedule slippage.

Several schedule and cost estimation
methods have been proposed over the last
decade with mixed and partial success due,
in part, to capability and stability limita-
tions of the estimation models. A signifi-
cant part of the estimate failures can be
attributed to a lack of understanding of
the inner workings of the software devel-
opment process and the impact of that
process on parameters used in the sched-
ule and cost estimates.

For example, a major avionics modern-
ization program was started in the mid-
1980s. The development contract award
for the system development was issued,
but by 1990 it was apparent the software
product would not be delivered. The gov-
ernment accepted the incomplete software
and completed the software in-house. The
failure of another software development
is, by itself, not noteworthy.

Unfortunately this example is very
common. Industry software delivery statis-
tics are quite dismal. Fifty percent of com-
mercial software products are delivered
over schedule, 33 percent are cancelled,
and 75 percent are operational failures.
Government software delivery statistics
are similar.

The following lessons learned discus-
sion is based upon a post-mortem analysis

of this avionics software development.
The intriguing analysis results show this
project was neither unique nor abnormal.
The problems that surfaced during the
project’s life were common in the mid-
1980s environment and are still common
today.

The purpose of this article is to high-
light the major software development and
management issues that led to this pro-
ject’s failure. The issues presented here are
timeless; that is, they are as likely to arise
today as they were at any time in the past.

Lessons Learned
This analysis was a classic study of proj-
ects gone awry. There are many lessons
that can be extracted from the contract
history. Since my experience is largely cen-
tered on the relationship between software
development and methods for predicting
cost and schedule, I focused my attention
on the development environment impact
on the cost and schedule of the avionics
program software. I will not touch upon
other areas such as risk management that
contributed to this project’s failure.

There is no implied order of impor-
tance to the lessons enumerated here.
Each of these issues contributed signifi-
cantly to the software development failure.
Taken together the issues spelled disaster.

Software Reuse and COTS
The magic elixir reuse was the solution to
the industry’s software cost and schedule
problems in the 80s. That was a time when
the new programming language Ada and
the concept of reusable software compo-
nent libraries were very popular. Reused
software in a mid-1980s development

equated to free software much as commer-
cial off the shelf (COTS ) software does
in a development environment today.
Unfortunately, software component
libraries never became widely available,
and the cost savings associated with
reusable software were not as large as pre-
dicted.

The concept of COTS software is eas-
iest to understand through a black box anal-
ogy. A COTS component is a black box
that can be fully utilized with no knowl-
edge of the box content. White box
behavior, on the other hand, requires some
knowledge of the internal box workings. A
software component is a white box when
(1) modification is required to meet system
requirements, (2) the component reliability
is in question, or (3) the knowledge of the
component and its documentation are
inadequate for the application. When the
white box condition occurs, the effort to
implement the software system must be
increased to account for reverse engineer-
ing the component, coding the component
changes, and additional testing required to
assure proper component performance
after the modification.

The reusable software baseline pro-
posed for this avionics system develop-
ment was in development by a competitor
for this project. The competitor’s system
had a different architecture and different
operational and performance require-
ments. The delivery schedule for the base-
line system that contained the reusable
software was from six months to a year
following the start of development for the
proposed avionics system.

The contractor defined about 90 per-
cent of the existing avionics system soft-

Lessons Learned From 
Another Failed Software Contract

Dr. Randall W. Jensen
Software Technology Support Center

Software project failure has been with us for a long time. Volumes have been written about the list of potential problem areas
in the acquisition of large, complex software systems. The list includes simple things like the cost of reuse, the acquisition
process, unrealistic expectations, and the development environment. The list has not changed much in the last 30 years.
Unrealistic cost and schedule estimates are causes for project failure as often as inadequate technology. Source selection is a
critical acquisition process step. Proper preparation and diligence in this step is key to a successful software project. There are
several activities essential to successful project planning and acquisition, including risk assessment. This lessons-learned dis-
cussion is based upon a post-mortem analysis of an avionics software development. The intriguing analysis results show this
project was neither unique nor abnormal. The problems that surfaced during the project’s inception and following downhill
plunge were common in the mid-80s environment and are still common today. The purpose of this discussion is to highlight
the major software development and management issues that led to this project’s failure. The issues presented here are time-
less; that is, they are as likely to arise today as they were at any time in the past.



Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering September 2003

ware as reusable with only about 10 per-
cent of the source lines to be developed as
part of the modernization program. The
assessment was made with only high-level
design information from the baseline sys-
tem. In reality, there was little reusable
software available for the program. Even if
the existing software had been available at
the start of development, the new soft-
ware requirements for the system would
have precluded any benefit from reuse.
The baseline software was not being devel-
oped with reuse as an attribute, nor could
its developer have been expected to be
more than minimally cooperative with the
adaptation of that software to the new
requirements.

Lesson 1: Reusable (COTS) software
never was, is not now, and never will be
free.

There is always some development
effort expended in the use of reusable
software components to engineer and inte-
grate those components into a software
system.

Proposal Evaluation
Source selection is a critical step in the
acquisition process. Proper preparation
and diligence in this step is key to a suc-
cessful software project. There are several
activities essential to successful project
planning and acquisition, including risk
assessment. This analysis focuses only on
the schedule and cost estimate evaluation.

Proposals are typically divided into
technical and cost portions. The technical
proposal is carefully analyzed and evaluat-
ed by a team of application and technolo-
gy experts. A second team of financial
experts evaluates the cost proposal. There
are two potential problems with this two-
team structure. First, the two teams often
perform the evaluations independently.
Technical risks that impact the cost esti-
mate are not communicated adequately, as
happened in this project.

Second, the cost evaluation team is
often relatively inexperienced in using soft-
ware estimating methods and tools. This
does not mean the team is inexperienced
in financial and accounting methods.
Software estimating is a specialty that
requires training and experience. Training
for this discipline is typically little more
than keyboard training; that is, “What key
do I press to get a cost profile?”

It appears the technical and cost evalu-
ation teams were working independently
during the proposal evaluations on this
source selection. The reuse issue created
by the overlap between the modernization

program and the reusable software devel-
opment should have been a major con-
cern. The high reuse level, or extremely
low size estimate, was obviously a key in
the contractor’s proposal strategy. Neither
the cost evaluation team, nor the technical
team, questioned the high reuse percent-
ages. The teams also failed to be con-
cerned about the low size estimate.

Lesson 2: Technical proposal evalua-
tion should be tightly coupled with
cost and schedule evaluation. Isolation
of the two activities leads to contract
disaster.

A should-cost estimate should be com-
pleted prior to the source selection phase
to establish a project plan and provide the
cost evaluation team with a sanity check
for the upcoming proposal evaluation. The
sanity check will vary considerably as con-
tractor capability and risk assessments are
refined during source selection. The cost
evaluation team should provide the
should-cost estimate.

A technique to strengthen the sanity
check is through using an independent
third-party estimate. This type of estimate
is frequently requested by the acquisition
team to validate and refine the cost team
estimate.

Estimating Practices 
It is important to develop a reasonable
estimate at the outset of any software
acquisition. The estimated cost and sched-
ule projections are vital for proper project
planning, source selection, resource man-
agement, and risk management. The
absence of a valid estimate is a primary
cause of cost and schedule overruns, pro-
grams that spiral out of control, and failed
programs. Estimate importance is often
ignored or minimized in the rush to get the
project underway.

A significant part of estimate failures
can be attributed to a lack of understand-
ing of the inner workings of the software
development process, and the impact of
that process on the parameters used in the
schedule and cost estimates. One of the
poorly understood variables in the devel-
opment process is the impact of manage-
ment on the ultimate cost and schedule of
the delivered product. The style and envi-
ronment imposed by the project manager
is a major driver in the software equation.

Several methods of schedule and cost
estimation have been available (academic
and commercial) and proven since the
early 1980s. These estimating methods
generally consider the impact of size and
the development environment on the

resulting delivery schedule and resource
requirements. The methods do not arrive
at the resource estimates automatically.
The estimator must understand the
method to input correct parameters to the
tool. This knowledge is only available
through training and experience.

The estimating methods can also pro-
duce incorrect or misleading estimates.
This project is an ideal example of esti-
mate misuse. The contractor’s proposal
estimate grossly erred in the size of the
development task by overestimating the
availability and benefits of reusable soft-
ware components. Other key issues (other
than size) were ignored in proposal esti-
mate. These omissions included the avion-
ics application experience and JOVIAL
language experience of the remote devel-
opment team. Volatility of the develop-
ment environment and experience with
that environment at both development
sites were ignored. Communication diffi-
culties between the sites were dismissed.

The proposal cost evaluation team
noticed a large discrepancy in the pro-
posed software cost when comparing the
cost proposed by the incumbent developer
and the new contractor. The cost evalua-
tion team notified the new contractor that
the team believed the contractor either did
not understand the tasks or that for some
other reason had not bid enough engineer-
ing hours. The contractor responded that
the costs had been verified using a proven
cost model and they did not believe they
made a mistake. The contractor subse-
quently reduced its bid about 15 percent.
An experienced software estimator would
have raised a serious cost risk concern fol-
lowing the contractor response.

Lesson 3: Estimating skill and experi-
ence is essential in software acquisition
and development.

Modern Development Practice
There has been considerable effort in
establishing the importance of good soft-
ware practices and a manageable develop-
ment process in successful software devel-
opment. The trail to modern software
development begins in the 1950s (before
software was born) with the work of W. E.
Deming1. Deming’s work became a basis
for the current Capability Maturity
Model®. We all recognize that large-scale
software development must be well man-
aged to have any possibility of success. In
the mid-1980s, the Waterfall Model repre-
sented the most commonly used software
development approach. The impact of
process and process management was yet
to be defined outside of the software esti-



Lessons Learned From Another Failed Software Contract

September 2003 www.stsc.hill.af.mil 27

mating methods.
One issue that arises almost constantly

is the cost and schedule impact of change.
A change can be as simple as changing
word processors, or as complex as chang-
ing the entire development process. How
long does it take to become proficient in
the Ada programming language? Thirty
days? It is not likely. Historic data places
Ada mastery at more than a few years.
How long does it take to install a new
computer network? A weekend? We have a
tendency as humans to trivialize the effort
to master any new technology. The larger
the number of concurrent changes or
magnitude of a single change, the more
amount of time and cost it takes to accom-
plish that change. This project demonstrat-
ed the human frailty.

The contractor proposed integrating
in-house tools on a state-of-the-art com-
puting system, and supplementing those
tools with government-furnished equip-
ment software to complete the develop-
ment system. The proposal also stated the
need to link a remote test subcontractor to
the new development system. The com-
puter program development plan (CPDP)
was still in outline form at contract award.
The new technology and lack of experi-
ence present in this development environ-
ment should have triggered several risk
issues. Each of the issues involved person-
nel training and experience, system refine-
ment, and testing. None of the environ-
ment problems were considered in the
development cost.

The contractor added a new geograph-
ically remote development site for the
avionics software development almost
immediately after the contract award. This
new organization was not mentioned in
the program proposal or in the preliminary
CPDP. The new remote staff was unfamil-
iar with the contractor organization and
development process (the CPDP had not
been approved), the application area
(avionics), the required programming lan-
guage (JOVIAL), the development tools
and environment, or the network connect-
ing the two development sites. The con-
tractor had not successfully ported the
avionics software tools to the development
computer at the time of this acquisition.
No cost or schedule impact was included
for this set of circumstances. All major
cost estimating methods available at the
time assumed a major impact.

Lesson 4: Instant experience is a myth.

Software development is largely a com-
munication problem. Paper and electronic
interfaces between software engineers

have not proven to be as effective as face-
to-face communication. This is primarily
due to interface complexity and the devel-
opment product clarity. The major soft-
ware estimating tools reduce the software
organization’s productivity for the use of
multiple organizations and/or multiple
development sites.

The new software development organ-
ization that was acquired at the outset of
development was not only new, but was
separated by thousands of miles from the
contractor’s primary site. The communica-
tion between these two sites was intended
to be electronic – yet another new tech-
nology that was not proven. The new per-
sonnel were not only unfamiliar with the
development environment, but also had
no experience or knowledge of the con-
tractor. The organization’s development
practices and procedures were at best doc-
umented, however, seldom followed. The
computing network between the two sites
was still not operational almost two years
after the contract award.

Since the software estimate totally
ignored these issues, as well as the experi-
ence issues, the logical assessment is they
assumed the volatility of the development
environment was also no problem.

Lesson 5: Multiple development sites
and organizations increase risk and
decrease productivity.

Summary
Software project failure has been with us
for a long time. Volumes have been written
about the list of potential problem areas in
the acquisition of large, complex software
systems. The list has not changed much in
the last 30 years. Unreal cost and schedule
estimates are causes for project failure as
often as inadequate technology is.

The acquisition team and the contrac-
tor must share the responsibility of this
classic failure. The proposal never should
have been submitted, and the contract
never should have been awarded. The con-
tractor’s proposal could not have been
based on their experience in the develop-
ment of this type of system. Buzzwords
and hype often cloud judgement, but reuse
has been around much longer than the
hype. Great expectations overrode com-
mon sense in their cost proposal planning
and estimates.

On the other hand, the proposal cost
evaluation team did not have a baseline
with which the proposed costs could have
been compared. The team did compare the
two proposed estimates, noted the large
discrepancy, and acted accordingly. The
cost evaluation team notified the new con-

tractor that the team believed the contrac-
tor either did not understand the tasks or
that for some other reason had not bid
enough engineering hours. The contractor
response was that the costs had been veri-
fied using a proven cost model, and they
did not believe they made a mistake. The
contractor subsequently reduced its bid
about 15 percent. The response should
have at least initiated a serious analysis of
the proposal.

Lesson 6: The major lesson learned
from this software acquisition is “never
make an uninformed decision.”◆

Note
1. Dr. W. Edwards Deming is known as

the father of the Japanese post-war
industrial revival and was regarded by
many as the leading quality guru in the
United States. He passed on in 1993.

About the Author 
Randall W. Jensen,
Ph.D., is a consultant
for the Software Tech-
nology Support Center,
Hill Air Force Base,
with more than 40 years

of practical experience as a computer
professional in hardware and software
development. He developed the model
that underlies the Sage and the GAI
SEER-SEM software cost and sched-
ule estimating systems. Jensen received
the International Society of Parametric
Analysts Freiman Award for
Outstanding Contributions to Para-
metric Estimating in 1984. He has
published several computer-related
texts, including “Software Engineer-
ing,” and numerous software and hard-
ware analysis papers. He is currently
preparing “Extreme Software
Estimating” for Prentice Hall, Inc.
Jensen has a bachelor’s of science
degree in electrical engineering, a mas-
ter’s of science degree in electrical
engineering, and a doctorate in electri-
cal engineering from Utah State
University.

Software Technology Support Center
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820
Phone: (801) 775-5742
Fax: (801) 777-8069
E-mail: randall.jensen@hill.af.mil


